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ON DISTRIBUTIVE LATTICES
OF LEFT k-ARCHIMEDEAN SEMIRINGS

TAPAS KUMAR MONDAL and ANJAN KUMAR BHUNIYA

Abstract. Here we introduce the notion of left k-Archimedean semirings which
generalize the notion of k-Archimedean semirings [1], and characterize the semir-
ings which are distributive lattices (chains) of left k-Archimedean semirings. A

semiring S is a left k-Archimedean semiring if for all a, b ∈ S, b ∈
√
Sa, the

k-radical of Sa. A semiring S is a distributive lattice of left k-Archimedean
semirings if and only if for all a, b ∈ S, ab ∈

√
Sa and S is a chain of left k-

Archimedean semirings if and only if
√
L is a completely prime k-ideal, for every

left k-ideal L of S.
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1. INTRODUCTION

In 1941, A. H. Clifford [4] first introduced and studied the semilattice decom-
positions of semigroups. The idea consists of decomposing a given semigroup S
into component subsemigroups which are of simpler structure, through a con-
gruence η on S such that the quotient semigroup S/η is the greatest semilattice
homomorphic image of S and each η-class is a component subsemigroup. This
well known result has since been generalized by M. S. Putcha, S. Bogdanović,
M. Ćirić, F. Kmet and many others [3], [7], [8].

Both the greatest semilattice decomposition of semigroups and the greatest
distributive lattice decomposition of semirings evolve out of the divisibility
relation. In an additive idempotent semiring S, we define a −→ b if a | bn
for some n ∈ N. The binary relation −→ is neither symmetric nor transitive
in general, which allows us to find the least distributive lattice congruence
as the least congruence from −→ in several ways. For example, symmetric
opening of the transitive closure and the transitive closure of the symmetric
opening of −→ give us different description of the least distributive lattice
congruence on S. Such variations in the description of the least distributive
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